Evaluation of Freeway Work Zone Merge Concepts

Michael Kurker
University of Texas at Austin

Research in conjunction with Ruoyu Liu, Shoupeng Tang, Chris Fournier, Jen Duthie, Natalia Ruiz Juri, Randy Machemehl, and Yi Qi
University of Texas at Austin and Texas Southern

TxDOT Project: Reduction of Motorists’ Delay and Crash Potential Upstream of Highway Work Zone
Task Outline

Phase I: Foundation
- Task 1. Review of Lane Control Practices
- Task 2. Gather and Analyze Observational Data
- Task 3. Design Experiments

Phase II: Model
- Task 4. Network Performance
- Task 5. Driver Behavior and Operations
- Task 6. Impacts on Safety

Phase III: Synthesis
- Task 7. Decision Tree
- Task 8. Pilot Training Workshop
- Task 9. Final Reports

Schematic showing the logical relationships between tasks and phases
Introduction to Merge Concepts

• Three common families of merge concepts:
 – Early Merge
 • Ideal for low demand \((V/C < 1)\)
 – Late Merge
 • Ideal for low to moderate demand \((V/C = 1)\)
 – Signal Merge
 • Ideal for heavy demand \((V/C > 1)\)
Merge Concepts (1 of 4)

• Early Merge
 – Assumed effective with low traffic demand (V/C < 1)
 • Near capacity, queues would develop risk of high speed drivers coming in contact with queue
 – Implemented as either static or dynamic
 – Used to warn drivers in advance of work zone of upcoming closed lane(s)
 • Allows time for users to find gaps to merge and complete merging prior to closure
 • Reduces roadway capacity
 – Early merge guidance given at varying distances where work zone cannot be perceived
 • Merge ¼ mile from work zone (lane closure with ¼ mile buffer space)
Merge Concepts (2 of 4)

- **Traffic Space** allows traffic to pass through the activity area.
- **Work Space** is set aside for workers, equipment, and material storage.
- **Buffer Space (lateral)** provides protection for traffic and workers.
- **100' Downstream Taper**
- **Activity Area** is where work takes place.
- **Transition Area** moves traffic out of its normal path.
- **Advance Warning Area** tells traffic what to expect ahead.
Merge Concepts (3 of 4)

• Late Merge
 – Assumed effective with moderate traffic demand (V/C approximately 1.0)
 – Implemented as either static or dynamic
 – Encourages all lanes to be used until specified merging point (one-eighth mile buffer space)
 • Once vehicles reach merge point, users in closed lane(s) merge in an alternating pattern
 • Takes advantage of full capacity of highway to store queue and minimize queue length
• **Signalized Merge**
 – Assumed effective with heavily congested traffic demand (V/C > 1)
 • All vehicles treated equally by giving equal fractions of green times for all open lanes
 – Green provided to merging lane followed by equal green time for one or two through lanes
 – Minimizes queue jumping and driving in closed lanes, since there is no priority for any lanes
 – Simulations run for 30s, 60s, 90s, 120s cycle lengths
Data Collection Sites

• Houston site: IH-610E Loop Southbound at Clinton Drive to Lawndale
 – 1 main lane and left shoulder closed between 6/8/12-10/29/12

• 1st Austin site: Southbound IH-35 approaching 51st Street
 – Left-side lower deck exit lane closed between 4/23/12-4/24/12

• 2nd Austin site: Westbound Oltorf Road at IH-35
 – Westbound through lane closed between 7/24/12-7/26/12
Data Collection: Austin I-35 and 51st Street

Short term impacts-reaction of drivers to new work zone when there is not enough information to make strategic decisions
Data Collection: Austin Westbound
Oltorf Street and IH-35

[Graph showing volume of vehicles per 15 minutes by time of day for different days, including Normal and Workzone conditions.]
Task Outline

Phase I: Foundation
- Task 1. Review of Lane Control Practices
- Task 2. Gather and Analyze Observational Data
- Task 3. Design Experiments

Phase II: Model
- Task 4. Network Performance
- Task 5. Driver Behavior and Operations
- Task 6. Impacts on Safety

Phase III: Synthesis
- Task 7. Decision Tree
- Task 8. Pilot Training Workshop
- Task 9. Final Reports

Schematic showing the logical relationships between tasks and phases
Task 5 Product(s)

- Outcome: Technical memorandum
 - Describes how microscopic simulation is used to model each scenario
 - Discusses modeling results
 - How do traffic operations differ across scenarios?
 - What patterns emerge?
Introduction to VISSIM

- VISSIM is a microscopic, behavior-based simulation model.
 - Microsimulation used to determine optimal merge concept techniques
 - Simulation run for 2-to-1, 3-to-2, and 3-to-1 lane configuration
 - Varying per lane demand on remaining open lanes through the work zone for 1800, 2000, 2200, 2400, and 2600 pcphpl processed
 - For signal merge, ran 30s, 60s, 90s, 120s cycle lengths
Measures of Effectiveness

• **Delay**
 – Avg. delay per vehicle (s)
 – Avg. # of stops per vehicle
 – Avg. stopped delay per vehicle (s)

• **Speed**
 – Avg. speed (mph)
 – Avg. speed on link prior to closure (mph)

• **Queue**
 – Avg. queue length (ft)
 – Max queue length (ft)
 – # of stops within queue
Weighted Rating System

<table>
<thead>
<tr>
<th>Tier</th>
<th>Assigned Points</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>• Avg. delay time
• Avg. speed</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>• Avg. number of stops / vehicle
• Avg. stopped delay / vehicle
• Avg. queue length</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>• Avg. speed on link prior to closure
• Max. queue length
• Number of stops within queue</td>
</tr>
</tbody>
</table>

Showed no difference for signal merge

- Points assigned to merge concept for the output with the most efficient operations
Optimal Merge Concepts

Optimal Merge Concept Techniques based on Lane Configuration and Demand

<table>
<thead>
<tr>
<th>User Demand</th>
<th>V < C</th>
<th>V < C</th>
<th>V = C</th>
<th>V > C</th>
<th>V > C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-to-1</td>
<td>EM</td>
<td>EM</td>
<td>LM</td>
<td>SM-90s</td>
<td>SM-90s</td>
</tr>
<tr>
<td>3-to-2</td>
<td>EM</td>
<td>EM</td>
<td>EM</td>
<td>EM</td>
<td>SM-120s</td>
</tr>
<tr>
<td>3-to-1</td>
<td>EM</td>
<td>EM</td>
<td>EM</td>
<td>SM-60s</td>
<td>SM-60s</td>
</tr>
</tbody>
</table>

Optimal Signalized Merge by Cycle Length

<table>
<thead>
<tr>
<th>User Demand</th>
<th>V < C</th>
<th>V < C</th>
<th>V = C</th>
<th>V > C</th>
<th>V > C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-to-1</td>
<td>60 sec</td>
<td>90 sec</td>
<td>90 sec</td>
<td>90 sec</td>
<td>90 sec</td>
</tr>
<tr>
<td>3-to-2</td>
<td>60 sec</td>
<td>60 sec</td>
<td>60 sec</td>
<td>60 sec</td>
<td>120 sec</td>
</tr>
<tr>
<td>3-to-1</td>
<td>60 sec</td>
<td>60 sec</td>
<td>60 sec</td>
<td>60 sec</td>
<td>60 sec</td>
</tr>
</tbody>
</table>
Safety Analysis

• Vehicle trajectory files are generated by running VISSIM, then used as an input into Surrogate Safety Assessment Model (SSAM) to produce traffic conflicts.

• SSAM combines microsimulation and automated conflict analysis, which analyzes frequency and character of vehicle-to-vehicle collisions in traffic.
SSAM Result Analysis

• Conflicts Related to Work Zone Closures:
 (a) Rear-end conflict (b) Lane-change conflict
Implementing Fixed Cycle Work Zone Traffic Signal Control (FCWZTSC) could significantly reduce the lane-change conflicts for all cycle lengths and all demands, except 1800VPHPL with a 30 second cycle length, when compared to the baseline (early merge) strategy.

Implementation of FCWZSC increases rear-end conflicts for all volume conditions, especially when the cycle length is 30 seconds.
SSAM Result: 3-to-2 Lane Configuration

- For light traffic demands of 1800 vphpl or 2000 vphpl, the baseline lane control strategy works well and has the least lane-change and rear-end conflicts.

- For heavy traffic condition, FCWZTSC can reduce both lane-change and rear-end conflicts.
SSAM Result: 3-to-1 Lane Configuration

- FCWZTSC can significantly reduce lane-change conflicts, especially when the traffic volume is high.
- When the traffic volume reaches 2400 vphpl, FCWZTSC starts to work well and reduces rear-end conflicts.
Procedure

Assess Before Condition (Capacity & Volume Profile)

Traffic Control Plan Data

Assess After Condition (Capacity & Volume Profile)

Approve Plan? No

Choose Merge Concept

Analyze VMS Placement

Done

Yes
Choose Merge Concept

- **Early Merge**: preferred, less queuing, and less user cost
 - Static or Dynamic

- **Late Merge**: If Demand approaches capacity and queuing expected
 - Static or Dynamic

- **Signalized Merge**: If Demand exceeds capacity

![Diagram showing the process of choosing a merge concept](Dynamic_Late_Merge_(ITE).png)
Conclusions

• Assumptions of different merge concept applications proved by VISSIM
 – Early merge: V/C < 1
 – Late merge: V/C = 1
 – Signal merge: V/C > 1

• Signal merge can reduce lane-change conflicts as demand exceeds 2,200 vphpl
 – should have minimum cycle length of 60s
Recommendations

• Analysis assumed no truck volume
 – 10% of traffic as trucks could impact outputs

• For signal merge, simulation assumes equal demand in all lanes and thus, equal green times
 – If drivers perceive work zone, demand may be unequal

• No horizontal or vertical grade

• Application of joint merge

• Analysis will be applied to various sites across Texas
 – TxDOT suggested using simulation with no entrance or exit ramps within two miles before or after work zone
References

Questions?